Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; PP2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231824

RESUMO

To improve the signal collection efficiency of Optical Coherence Tomography (OCT) for biomedical applications. A novel coaxial optical design was implemented, utilizing a wavefront-division beam splitter in the sample arm with a 45-degree rod mirror. This design allowed for the simultaneous collection of bright and dark field signals. The bright field signal was detected within its circular aperture in a manner similar to standard OCT, while the dark field signal passed through an annular-shaped aperture and was collected by the same spectrometer via a fiber array. This new configuration improved the signal collection efficiency by ∼3 dB for typical biological tissues. Dark-field OCT images were found to provide higher resolution, contrast and distinct information compared to standard bright-field OCT. By compounding bright and dark field images, speckle noise was suppressed by ∼ √2 . These advantages were validated using Teflon phantoms, chicken breast ex vivo, and human skin in vivo. This new OCT configuration significantly enhances signal collection efficiency and image quality, offering great potential for improving OCT technology with better depth, contrast, resolution, speckles, and signal-to-noise ratio. We believe that the bright and dark field signals will enable more comprehensive tissue characterization with the angled scattered light. This advancement will greatly promote the OCT technology in various clinical and biomedical research applications.

2.
Opt Express ; 31(25): 41292-41300, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087531

RESUMO

What we believe to be a novel integrated circular polarization dynamic converter (CPDC) is proposed based on the four-layer mirror symmetry structure. By designing the twisted structure and rearranging the orientation direction of liquid crystal molecules for each layer, the application wavelength range could be broadened. For the viewing angle expansion, negative birefringent films are selected to compensate for the retardation deviation under oblique incidence. Finally, the particle swarm algorithm is used to optimize the whole configuration, and the polarization conversion efficiency calculated by the finite element method (FEM) can achieve 90% in the wavelength range from 320 nm to 800 nm at an ultrawide view of 160°. Compared with traditionally active liquid crystal waveplates, the design has potential advantages in both wavelength and field of view (FOV) and provides the possibility for the integrated and flimsy fabrication of devices.

3.
Opt Express ; 31(15): 24678-24690, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475288

RESUMO

This paper proposes an extended prism coupling analysis method to accurately analyze the coupling structure of liquid crystal (LC) cladding waveguide beam steerer. We analyze the effects of LC anisotropy on the coupling of transverse electric (TE) and transverse magnetic (TM) modes and derive the expression of the optical field distribution that perfectly matches the given coupling structure. Based on this method, we present the optimal coupling structure for Gaussian beam. Taking into account the practical manufacturing process, we propose a simplified coupling structure and perform a detailed analysis of its performance based on numerical simulations. Experimental results show a coupling efficiency of 91% and a coupling angle full width at half maximum (FWHM) of about ±0.02°, demonstrating the effectiveness of the proposed method in predicting the coupling performance of anisotropic cladding waveguides.

4.
Opt Express ; 31(4): 6615-6622, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823913

RESUMO

A high-speed circular polarization converter (CPC) with a wide field of view (FOV) and wavelength range is designed and fabricated in this paper. The multi-waveplate combined structure is applied to constitute the basic configuration of the CPC for broadening the wavelength range. An electrically suppressed helix ferroelectric liquid crystal (ESHFLC) material with fast response is used as a medium for dynamic polarization operation. The compensation films are used to expand the FOV by attaching to the configuration. The simulation results demonstrate that the optimized CPC structure can achieve over 97% orthogonal circular polarization conversion efficiency in 300 nm bandwidth at a 90° viewing cone for both working states. Finally, we have experiments and the results show well consistency with the theoretical results.

5.
Opt Express ; 31(1): 459-468, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606980

RESUMO

Polarization imaging techniques have more prominent advantages for imaging in strongly scattered media. Previous de-scattering methods of polarization imaging usually require the priori information of the background region, and rarely consider the effect of non-uniformity of the optical field on image recovery, which not only reduces the processing speed of imaging but also introduces errors in image recovery, especially for moving targets in complex scattering environments. In this paper, we propose a turbid underwater moving image recovery method based on the global estimation of the intensity and the degree of polarization (DOP) of the backscattered light, combined with polarization-relation histogram processing techniques. The full spatial distribution of the intensity and the DOP of the backscattered light are obtained by using frequency domain analysis and filtering. Besides, a threshold factor is set in the frequency domain low-pass filter, which is used to adjust the execution region of the filter, which effectively reduces the error in image recovery caused by estimating the DOP of the backscattered light as a constant in traditional methods with non-uniform illumination. Meanwhile, our method requires no human-computer interaction, which effectively solves the drawbacks that the moving target is difficult to be recovered by traditional methods. Experimental studies were conducted on static and moving targets under turbid water, and satisfactory image recovery quality is achieved.


Assuntos
Diagnóstico por Imagem , Iluminação , Nefelometria e Turbidimetria , Espalhamento de Radiação , Refração Ocular
6.
Opt Express ; 30(18): 31913-31924, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242264

RESUMO

Actively tunable or reconfigurable structural colors are highly promising in future development for high resolution imaging and displaying applications. To this end, we demonstrate switchable structural colors covering the entire visible range by integrating aluminum nanoaperture arrays with nematic liquid crystals. The geometrically anisotropic design of the nanoapertures provides strong polarization-dependent coloration. By overlaying a nematic liquid crystal layer, we further demonstrate switchable ability of the structural colors by either changing the polarization of the incident light or applying an external voltage. The switchable structural colors have a fast response time of 28 ms at a driving voltage of 6.5 V. Furthermore, colorful patterns are demonstrated by coding the colors with various dimensions of nanoaperture arrays with dual switching modes. Our proposed technique in this work provides a dual-mode switchable structural colors, which is highly promising for polarimetric displays, imaging sensors, and visual cryptography.

7.
ACS Appl Mater Interfaces ; 14(18): 21758-21767, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500101

RESUMO

Structural colors based on the macro- or nanostructure formation are ubiquitous in nature, having great prospects in many fields as a result of their environmentally friendly and long-term stable characteristics compared to pigments or dyes. However, the current fabrication techniques still face challenges for the generation of high-quality structural color patterns, especially at the macroscale, in an efficient way. Here, we demonstrate a method that exploits a flexible scanning process of generating macropatterns to convert the contour profiles into well-defined sub-micrometer grating structures with unprecedented vivid structural colors, at high speed and low cost on the graphene oxide film. The nature of dynamic beam shaping of the laser line spot allows us to flexibly construct the complex patterns at high speed, in sharp contrast to the traditional point-by-point laser processing. Moreover, the multicolor display of the patterns can be carried out by simply modulating the laser polarization to change the orientation of the sub-micrometer structures, and this nanopainting strategy is further explored to flexibly design the composite image for potential anti-counterfeiting applications.

8.
Biomed Opt Express ; 13(4): 2050-2067, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519265

RESUMO

Fourier ptychography is a promising and flexible imaging technique that can achieve 2D quantitative reconstruction with higher resolution beyond the limitation of the system. Meanwhile, by using different imaging models, the same platform can be applied to achieve 3D refractive index reconstruction. To improve the illumination NA as much as possible while reducing the intensity attenuation problem caused by the LED board used in the traditional FP platform, we apply a hemispherical lighting structure and design a new LED arrangement according to 3D Fourier diffraction theory. Therefore, we could obtain the illumination of 0.98NA using 187 LEDs and achieve imaging half-pitch resolutions of ∼174 nm and ∼524 nm for the lateral and axial directions respectively, using a 40×/0.6NA objective lens. Furthermore, to reduce the number of captured images required and realize real-time data collection, we apply the multiplexed-coded illumination strategy and compare several coded patterns through simulation and experiment. Through comparison, we determined a radial-coded illumination pattern that could achieve more similar results as sequential scanning and increase the acquisition speed to above 1 Hz. Therefore, this paper provides the possibility of this technique in real-time 3D observation of in vitro live samples.

9.
Opt Express ; 30(7): 12014-12025, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473131

RESUMO

The combination of a digital micromirror device (DMD) lithography system and a rotatable polarizer provides a simple and convenient method to achieve the pixelated liquid crystal micropolarizer (LCMP) array for polarization imaging. In this paper, two crucial problems restricting the high-precision fabrication of LCMP array are pointed out and settled: the dislocation of LCMP pixels caused by parallelism error of the rotating polarizer and the grid defect caused by the gap between micromirrors. After correction, the maximum deviation of the fabricated LCMP pixels was reduced from 3.23 µm to 0.11 µm and the grid defect is eliminated. The correction method reported here lays a good foundation for the fine processing of liquid crystal devices with arbitrary photoalignment structure by using the DMD system.

10.
Nano Lett ; 21(17): 7183-7190, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410715

RESUMO

Metasurface-based structural coloration is a promising enabling technology for advanced optical encryption with a high-security level. Herein, we propose a paradigm of electrically switchable, polarization-sensitive optical encryption based on designed metasurfaces integrated with polymer-dispersed liquid crystals. The metasurfaces consist of anisotropic and isotropic aluminum nanoaperture arrays. Optical images can be encrypted by elaborately arranging anisotropic and isotropic nanoapertures based on their polarization-dependent plasmonic resonance characteristics. We demonstrate high-quality encrypted images and QR codes with electrically switchable, polarization-sensitive properties based on PDLC-integrated aluminum nanoaperture arrays. The proposed technique can be applied to many fields including high-security optical encryption, security tags, anticounterfeiting, multichannel imaging, and dynamic displays.

11.
J Biophotonics ; 14(6): e202000444, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33583150

RESUMO

Fourier ptychographic microscopy is a promising imaging technique which can circumvent the space-bandwidth product of the system and achieve a reconstruction result with wide field-of-view (FOV), high-resolution and quantitative phase information. However, traditional iterative-based methods typically require multiple times to get convergence, and due to the wave vector deviation in different areas, the millimeter-level full-FOV cannot be well reconstructed once and typically required to be separated into several portions with sufficient overlaps and reconstructed separately, which makes traditional methods suffer from long reconstruction time for a large-FOV (of the order of minutes) and limits the application in real-time large-FOV monitoring of live sample in vitro. Here we propose a novel deep-learning based method called DFNN which can be used in place of traditional iterative-based methods to increase the quality of single large-FOV reconstruction and reducing the processing time from 167.5 to 0.1125 second. In addition, we demonstrate that by training based on the simulation dataset with high-entropy property (Opt. Express 28, 24 152 [2020]), DFNN could has fine generalizability and little dependence on the morphological features of samples. The superior robustness of DFNN against noise is also demonstrated in both simulation and experiment. Furthermore, our model shows more robustness against the wave vector deviation. Therefore, we could achieve better results at the edge areas of a single large-FOV reconstruction. Our method demonstrates a promising way to perform real-time single large-FOV reconstructions and provides further possibilities for real-time large-FOV monitoring of live samples with sub-cellular resolution.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Microscopia
12.
Nanoscale ; 12(32): 16864-16874, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32766615

RESUMO

Super-resolution optical fluctuation imaging (SOFI) provides subdiffraction resolution based on the analysis of temporal stochastic intensity fluctuations. However, conventional SOFI imaging relies on the intrinsic blinking properties of fluorescent markers and suffers from severe artifacts and signal losses owing to the unmatched blinking on-time ratio. Herein, we propose active-modulated, random-illumination, super-resolution optical fluctuation imaging that allows the traditional SOFI to overcome the effect of the intrinsic impertinent blinking characteristic of fluorescent markers. We demonstrate theoretically and experimentally that this method of active-modulated random illumination can generate random illumination patterns with a controllable blinking on-time ratio to match the high-order SOFI reconstruction considerably reducing the generated artifacts and signal losses. High-order, high-quality images can be obtained with increased lateral resolution.

13.
Biomed Opt Express ; 11(12): 7175-7182, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408988

RESUMO

Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique that has high-resolution and wide field-of-view (FOV). FPM bypasses the NA limit of the system by stitching a number of variable-illuminated measured images in Fourier space. On the basis of the wide FOV of the low NA objective, the high-resolution image with a wide FOV can be reconstructed through the phase recovery algorithm. However, the high-resolution reconstruction images are affected by the LED array point light source. The results are: (1) the intensities collected by the sample are severely declined when edge LEDs illuminate the sample; (2) the multiple reconstructions are caused by wavevectors inconsistency for the full FOV images. Here, we propose a new lighting scheme termed full FOV Fourier ptychographic microscopy (F3PM). By combining the LED array and telecentric lens, the method can provide plane waves with different angles while maintaining uniform intensity. Benefiting from the telecentric performance and f‒θ property of the telecentric lens, the system stability is improved and the relationship between the position of LED and its illumination angle is simplified. The excellent plane wave provided by the telecentric lens guarantees the same wavevector in the full FOV, and we use this wavevector to reconstruct the full FOV during one time. The area and diameter of the single reconstruction FOV reached 14.6mm 2 and 5.4 mm, respectively, and the diameter is very close to the field number (5.5 mm) of the 4× objective. Compared with the traditional FPM, we have increased the diameter of FOV in a single reconstruction by ∼ 10 times, eliminating the complicated steps of computational redundancy and image stitching.

14.
Opt Express ; 27(17): 24161-24174, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510310

RESUMO

Fourier ptychographic microscopy (FPM) is a recently developed imaging approach aiming at circumventing the limitation of the space-bandwidth product (SBP) and acquiring a complex image with both wide field and high resolution. So far, in many algorithms that have been proposed to solve the FPM reconstruction problem, the pupil function is set to be a fixed value such as the coherent transfer function (CTF) of the system. However, the pupil aberration of the optical components in an FPM imaging system can significantly degrade the quality of the reconstruction results. In this paper, we build a trainable network (FINN-P) which combines the pupil recovery with the forward imaging process of FPM based on TensorFlow. Both the spectrum of the sample and pupil function are treated as the two-dimensional (2D) learnable weights of layers. Therefore, the complex object information and pupil function can be obtained simultaneously by minimizing the loss function in the training process. Simulated datasets are used to verify the effectiveness of pupil recovery, and experiments on the open source measured dataset demonstrate that our method can achieve better reconstruction results even in the presence of a large aberration. In addition, the recovered pupil function can be used as a good estimate before further analysis of the system optical transmission capability.

15.
Opt Express ; 27(10): 14099-14111, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163863

RESUMO

Fourier ptychographic microscopy (FPM) is a recently developed computational microscopy approach that produces both wide field-of-view (FOV) and high resolution (HR) intensity and a phase image of the sample. Inspired by the ideas of synthetic aperture and phase retrieval, FPM iteratively stitches multiple low-resolution (LR) images with variable illumination angles in Fourier space to reconstruct an HR complex image. Typically, FPM illuminating the sample with an LED array is approximated as a coherent imaging process, and the coherent transfer function (CTF) is imposed as a support constraint in Fourier space. However, a millimeter-scale LED is inapposite to be treated as a coherent light source. As a result, the quality of reconstructed image is degraded by the inappropriate approximation. In this paper, we analyze the coherence of an FPM system and propose a novel constraint approach termed Apodized CTF (AC) constraint in Fourier space. Results on both simulated data and actual captured data show that this new constraint is more stable and robust than CTF. This approach can also relax the coherence requirement of illumination. In addition, it is simple, does not require additional computations, and is easy to be embedded in almost all the reconstruction algorithms proposed so far.

16.
Opt Express ; 27(8): 11651-11660, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053008

RESUMO

Open loop liquid crystal adaptive optics (LC AO) has overcome the disadvantage of low energy efficiency after years of research, and its use is very promising in ground-based large aperture telescopes for visible band imaging. However, the low system bandwidth of open loop LC AO still limits its application. In order to solve this problem, we bring the concept of proportional-derivative control (which is widely used in closed loop systems) into open loop LC AO in this paper. Experiment results verified that the system -3 dB rejection bandwidth could improve from 75 Hz to 112 Hz when tip-tilt aberration is introduced, and the mean relative contrast ratio of imaging results could improve 80% when high-order aberrations are introduced. The proposed control method has significant meaning in promoting the application of open loop LC AO in ground-based large aperture telescopes for visible imaging.

17.
Opt Express ; 27(5): 7513-7522, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876314

RESUMO

A compound-eye imaging system based on the phase diffractive microlens array as a compact observation module is proposed. As compared with the refractive microlens in common compound-eye imaging systems, the diffractive microlens is a flat imaging optics featuring high relative aperture, thin component thickness and compatibility with lithography techniques. As an application, a compact fingerprint imaging module was demonstrated using this compound-eye imaging system. The phase Fresnel microlens array with continuous trough morphology was fabricated via the self-developed gray-scale laser direct write equipment. An image reconstruction method is proposed by extracting the effective image information of each Fresnel microlens, removing the complex signal separator layer from the compound-eye imaging system. The illumination optics is further planarized through the waveguide backlighting and the waveguide functions as the touch panel for fingerprint recording. The novel compound-eye imaging device length was only restricted by the focal length of the microlens with a low limit of 4.12f. The applicability of this novel compound-eye imaging system was further demonstrated by recording the human fingerprint texture, paving ways for various applications as a compact imaging system.

18.
Micromachines (Basel) ; 9(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30424441

RESUMO

This paper presents an approach that is capable of producing a color image using a single composite diffractive optical element (CDOE). In this approach, the imaging function of a DOE and the spectral deflection characteristics of a grating were combined together to obtain a color image at a certain position. The DOE was designed specially to image the red, green, and blue lights at the same distance along an optical axis, and the grating was designed to overlay the images to an off-axis position. We report the details of the design process of the DOE and the grating, and the relationship between the various parameters of the CDOE. Following the design and numerical simulations, a CDOE was fabricated, and imaging experiments were carried out. Both the numerical simulations and the experimental verifications demonstrated a successful operation of this new approach. As a platform based on coaxial illumination and off-axis imaging, this system is featured with simple structures and no cross-talk of the light fields, which has huge potentials in applications such as holographic imaging.

19.
Analyst ; 143(16): 3798-3807, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29953139

RESUMO

Unlike conventional approaches that require bulky and expensive pumping equipment, herein, we present a simple method for self-activated microdroplet generation and transport inside a long microchannel. The high gas-pressure in the syringes is used to provide the built-in power of self-priming so that the continuous phase and the dispersed phase are sequentially automated into the generator junction to produce stabilized droplets. The volume ratio between the aqueous and oil phases can be adjusted in a flexible way by accurately controlling the volume of the compressed air in the two syringes, and a novel self-activated micropumping mechanism is introduced to explain this phenomenon. Through the flow rate test inside the microchannels under different conditions, it is found that the flow rate of microdroplets inside the Teflon microchannel is highly stable. As a proof of concept, this novel micropump is applied for a 3D spiral chip for flow through PCR. It is demonstrated that this self-activated micropump is acceptable for droplet-based continuous flow microfluidic PCR with the thermal-cycle controlled by a single thermostatic heater, while the real-time (RT) fluorescence signal is comparable to a commercial qPCR cycler. This self-activated, portable, and controllable droplet generator would extend the droplet-based applications to in-field analysis and facilitate the exploitation of droplet microfluidics by non-technical users.

20.
Sci Rep ; 8(1): 1124, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348561

RESUMO

The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0 = 10, f G = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...